спеціалізована СУБД для зберігання та обробки показань датчиків та лічильників
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
diploma/examples/loadtest/loadtest.go

399 lines
10 KiB

package main
import (
"encoding/json"
"fmt"
"math/rand"
"os"
"time"
"gordenko.dev/dima/diploma"
"gordenko.dev/dima/diploma/client"
"gordenko.dev/dima/diploma/proto"
)
// METRICS INFO
type MetricInfo struct {
MetricID uint32 `json:"metricID"`
MetricType diploma.MetricType `json:"metricType"`
FracDigits int `json:"fracDigits"`
Since int64 `json:"since"`
Until int64 `json:"until"`
Qty int `json:"qty"`
}
func readMetricInfo(fileName string) (list []MetricInfo, err error) {
buf, err := os.ReadFile(fileName)
if err != nil {
return
}
err = json.Unmarshal(buf, &list)
return
}
// RANDOM QUERY GENERATOR
type QueryRecipe struct {
MetricID uint32
MetricIDs []uint32
Method int
RangeCode int
Since uint32
Until uint32
GroupBy diploma.GroupBy
}
type RandomQueryGenerator struct {
metrics []MetricInfo
groupByOptions []diploma.GroupBy
listCurrentValuesProbability int
listPeriodsProbability int
timeRangeProbDistribution []int
}
type RandomQueryGeneratorOptions struct {
Metrics []MetricInfo
ListCurrentValuesProbability int
ListPeriodsProbability int
TimeRangeProbabilities []int
}
func NewRandomQueryGenerator(opt RandomQueryGeneratorOptions) *RandomQueryGenerator {
if opt.ListCurrentValuesProbability >= 100 {
panic(fmt.Sprintf("wrong ListCurrentValuesProbability: %d", opt.ListCurrentValuesProbability))
}
if opt.ListPeriodsProbability >= 100 {
panic(fmt.Sprintf("wrong ListPeriodsProbability: %d", opt.ListPeriodsProbability))
}
// check total time range propability
var totalTimeRangeProbability int
for _, p := range opt.TimeRangeProbabilities {
totalTimeRangeProbability += p
}
if totalTimeRangeProbability != 100 {
panic(fmt.Sprintf("total time range probabilities != 100: %d", totalTimeRangeProbability))
}
// create time range probability distribution
timeRangeProbDistribution := make([]int, len(opt.TimeRangeProbabilities))
timeRangeProbDistribution[0] = opt.TimeRangeProbabilities[0]
for i := 1; i < len(opt.TimeRangeProbabilities); i++ {
timeRangeProbDistribution[i] = timeRangeProbDistribution[i-1] + opt.TimeRangeProbabilities[i]
}
return &RandomQueryGenerator{
metrics: opt.Metrics,
groupByOptions: []diploma.GroupBy{
diploma.GroupByHour,
diploma.GroupByDay,
diploma.GroupByMonth,
},
listCurrentValuesProbability: opt.ListCurrentValuesProbability,
listPeriodsProbability: opt.ListPeriodsProbability,
timeRangeProbDistribution: timeRangeProbDistribution,
}
}
func (s *RandomQueryGenerator) GetQueryRecipe() QueryRecipe {
metric := s.getRandomMetric()
num := rand.Intn(100)
if num < s.listCurrentValuesProbability {
qty := 5 + rand.Intn(100) // від 5 до 105
return QueryRecipe{
MetricIDs: s.listRandomUniqueMetricIDs(qty),
Method: listCurrentValues,
}
} else {
if metric.MetricType == diploma.Cumulative {
num = rand.Intn(100)
if num < s.listPeriodsProbability {
groupBy := s.groupByOptions[rand.Intn(len(s.groupByOptions))]
var (
minDays = 1
maxDays = 7
)
if groupBy == diploma.GroupByDay {
minDays = 1
maxDays = 30
} else if groupBy == diploma.GroupByMonth {
minDays = 1
maxDays = 30
}
rangeCode, since, until := s.getRandomTimeRange(
metric.Since, metric.Until, minDays, maxDays)
return QueryRecipe{
MetricID: metric.MetricID,
Method: listCumulativePeriods,
RangeCode: rangeCode,
Since: uint32(since),
Until: uint32(until),
GroupBy: groupBy,
}
} else {
var (
minDays = 1
maxDays = 3
)
rangeCode, since, until := s.getRandomTimeRange(
metric.Since, metric.Until, minDays, maxDays)
return QueryRecipe{
MetricID: metric.MetricID,
Method: listCumulativeMeasures,
RangeCode: rangeCode,
Since: uint32(since),
Until: uint32(until),
}
}
} else {
num = rand.Intn(100)
if num < s.listPeriodsProbability {
groupBy := s.groupByOptions[rand.Intn(len(s.groupByOptions))]
var (
minDays = 1
maxDays = 7
)
if groupBy == diploma.GroupByDay {
minDays = 1
maxDays = 30
} else if groupBy == diploma.GroupByMonth {
minDays = 1
maxDays = 30
}
rangeCode, since, until := s.getRandomTimeRange(
metric.Since, metric.Until, minDays, maxDays)
return QueryRecipe{
MetricID: metric.MetricID,
Method: listInstantPeriods,
RangeCode: rangeCode,
Since: uint32(since),
Until: uint32(until),
GroupBy: groupBy,
}
} else {
var (
minDays = 1
maxDays = 3
)
rangeCode, since, until := s.getRandomTimeRange(
metric.Since, metric.Until, minDays, maxDays)
return QueryRecipe{
MetricID: metric.MetricID,
Method: listInstantMeasures,
RangeCode: rangeCode,
Since: uint32(since),
Until: uint32(until),
}
}
}
}
}
// Генерує випадковий набір унікальних metricID з [1, 100]
func (s *RandomQueryGenerator) listRandomUniqueMetricIDs(count int) []uint32 {
// переставляю індекси у випадковому порядку
indexes := rand.Perm(len(s.metrics))
// копіюю metricID із перших випадкових індексів
metricIDs := make([]uint32, count)
for i := range count {
metricIDs[i] = s.metrics[indexes[i]].MetricID
}
return metricIDs
}
const (
secondsPerDay = 86400
dayRange = 0
weekRange = 1
monthRange = 2
randomTimeRange = 3
)
// Випадковий часовий діапазон
func (s *RandomQueryGenerator) getRandomTimeRange(start, end int64, minDays, maxDays int) (int, int64, int64) {
var (
since int64
until int64
num = rand.Intn(100)
rangeCode int
threshold int
)
for rangeCode, threshold = range s.timeRangeProbDistribution {
if num < threshold {
break
}
}
switch rangeCode {
case dayRange:
since = end - secondsPerDay
until = end
case weekRange:
since = end - 7*secondsPerDay
until = end
case monthRange:
since = end - 30*secondsPerDay
until = end
case randomTimeRange:
if start == end {
return rangeCode, start, end
}
// Випадковий момент часу для since
since = start + rand.Int63n(end-start)
// Випадкова тривалість у днях (але не виходити за межу end)
durationInDays := minDays + rand.Intn(maxDays-minDays)
until = since + int64(durationInDays)*secondsPerDay
if until > end {
until = end
}
}
return rangeCode, since, until
}
func (s *RandomQueryGenerator) getRandomMetric() MetricInfo {
return s.metrics[rand.Intn(len(s.metrics))]
}
// EXECUTE QUERY
func execQuery(conn *client.Connection, queryGenerator *RandomQueryGenerator, stat *WorkerStat) (err error) {
recipe := queryGenerator.GetQueryRecipe()
var elapsedTime time.Duration
switch recipe.Method {
case listCurrentValues:
t1 := time.Now()
_, err := conn.ListCurrentValues(recipe.MetricIDs)
elapsedTime = time.Since(t1)
stat.ElapsedTime += elapsedTime
stat.Queries++
stat.ElapsedTimeByMethods[recipe.Method] += elapsedTime
stat.MethodCalls[recipe.Method]++
if err != nil {
return fmt.Errorf("ListCurrentValues: %s", err)
}
case listInstantMeasures:
t1 := time.Now()
_, err := conn.ListInstantMeasures(proto.ListInstantMeasuresReq{
MetricID: recipe.MetricID,
Since: recipe.Since,
Until: recipe.Until,
})
elapsedTime = time.Since(t1)
stat.ElapsedTime += elapsedTime
stat.Queries++
stat.ElapsedTimeByMethods[recipe.Method] += elapsedTime
stat.MethodCalls[recipe.Method]++
stat.ElapsedTimeByTimeRanges[recipe.RangeCode] += elapsedTime
stat.TimeRangeCalls[recipe.RangeCode]++
if err != nil {
return fmt.Errorf("ListInstantMeasures(%d): %s",
recipe.MetricID, err)
}
case listCumulativeMeasures:
t1 := time.Now()
_, err := conn.ListCumulativeMeasures(proto.ListCumulativeMeasuresReq{
MetricID: recipe.MetricID,
Since: recipe.Since,
Until: recipe.Until,
})
elapsedTime = time.Since(t1)
stat.ElapsedTime += elapsedTime
stat.Queries++
stat.ElapsedTimeByMethods[recipe.Method] += elapsedTime
stat.MethodCalls[recipe.Method]++
stat.ElapsedTimeByTimeRanges[recipe.RangeCode] += elapsedTime
stat.TimeRangeCalls[recipe.RangeCode]++
if err != nil {
return fmt.Errorf("ListCumulativeMeasures(%d): %s",
recipe.MetricID, err)
}
case listInstantPeriods:
since := time.Unix(int64(recipe.Since), 0)
until := time.Unix(int64(recipe.Until), 0)
//
t1 := time.Now()
_, err := conn.ListInstantPeriods(proto.ListInstantPeriodsReq{
MetricID: recipe.MetricID,
Since: proto.TimeBound{
Year: since.Year(),
Month: since.Month(),
Day: since.Day(),
},
Until: proto.TimeBound{
Year: until.Year(),
Month: until.Month(),
Day: until.Day(),
},
GroupBy: recipe.GroupBy,
AggregateFuncs: diploma.AggregateMin | diploma.AggregateMax | diploma.AggregateAvg,
})
elapsedTime = time.Since(t1)
stat.ElapsedTime += elapsedTime
stat.Queries++
stat.ElapsedTimeByMethods[recipe.Method] += elapsedTime
stat.MethodCalls[recipe.Method]++
stat.ElapsedTimeByTimeRanges[recipe.RangeCode] += elapsedTime
stat.TimeRangeCalls[recipe.RangeCode]++
if err != nil {
return fmt.Errorf("ListInstantPeriods(%d): %s",
recipe.MetricID, err)
}
case listCumulativePeriods:
since := time.Unix(int64(recipe.Since), 0)
until := time.Unix(int64(recipe.Until), 0)
//
t1 := time.Now()
_, err := conn.ListCumulativePeriods(proto.ListCumulativePeriodsReq{
MetricID: recipe.MetricID,
Since: proto.TimeBound{
Year: since.Year(),
Month: since.Month(),
Day: since.Day(),
},
Until: proto.TimeBound{
Year: until.Year(),
Month: until.Month(),
Day: until.Day(),
},
GroupBy: recipe.GroupBy,
})
elapsedTime = time.Since(t1)
stat.ElapsedTime += elapsedTime
stat.Queries++
stat.ElapsedTimeByMethods[recipe.Method] += elapsedTime
stat.MethodCalls[recipe.Method]++
stat.ElapsedTimeByTimeRanges[recipe.RangeCode] += elapsedTime
stat.TimeRangeCalls[recipe.RangeCode]++
if err != nil {
return fmt.Errorf("ListCumulativePeriods(%d): %s",
recipe.MetricID, err)
}
}
return
}